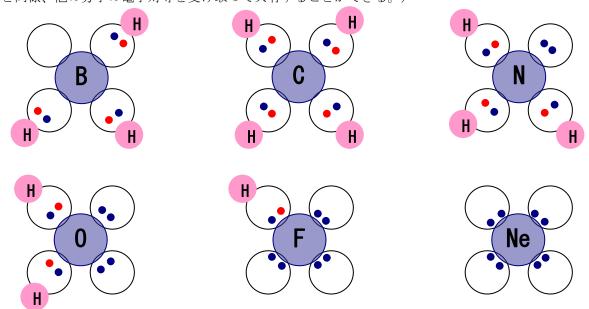

イオンや分子の成り立ちと化学式、構造式

最外殻の電子を失ったり、最外殻に電子を受け取ったり、他の原子と電子を共有して【 】になる。

上図は左から、水素原子(H)、水素イオン(プロトン、または、ヒドロン)(H⁺)、水素化物イオン(ヒドリド)(H⁻)、水素分子(H₂)である。なお、水素イオンと水素化物イオンが出会うと水素分子を生じる。


最外殼を4つの白丸で書いてみた。(最外殼は、4つの軌道(s 軌道 1つ、p 軌道 3つ)を含む。)

元素ごとに結合の手の本数が決まっている。(もちろん、例外を生じる場合もある。(^ ^)/)

			,,,, e== 0 %, i = 0 -> 0 %,		
	最外殼		閉殻となるための結合、電子対の数		
	電子数				
第1族	1	1価の陽イオンになりやすい	水素は【 】本の共有結合をもつ		
第2族	2	2価の陽イオンになりやすい			
第13族	3	3価の陽イオンになることができる	共有結合をする場合は【 】本(※)		
第14族	4		【 】本の共有結合		
第 15 族	5		【 】本の共有結合と、孤立電子対【 】		
第 16 族	6		【 】本の共有結合と、孤立電子対【 】		
第 17 族	7	1価の陰イオンになりやすい	【 】本の共有結合と、孤立電子対【 】		

※ 下図からもわかるように、第 13 族の場合、共有結合だけでは閉殻とならない。 (そのため BH。などの分子は、陽イオンと同様、他の分子の電子対等を受け取って共有することができる。)

赤は水素の価電子に由来して描いた電子。(実際には、結合に使われている2つの電子が、どちら由来であるかという区別をつけることはできない。) なお、周期表右の方が原子サイズが小さい(有効【 】が大きいため、最外殻電子を強くひきつけている)ことと対応して、電子対の位置を核の近くに描いている。

化学式 … 化学物質を元素の構成で示す方法

ト 分子式 分子からなる物質が対象。短縮構造式や示性式を含む 例 酢酸 C₂H₄O₂, CH₃CO₂H 後者のように官能基の構造を明記したものが示性式

├ イオン式

├ 組成式 金属、イオン結晶などに含まれる元素やイオンの組成比を示す。構造は反映しない。

例 塩化ナトリウム NaCl, X と Y の合金 X_nY_(1-n)

例 酢酸 CH₂O

ト 実験式 元素分析などの実験により得られる組成式。

ト 構造式 結合の順序、結合の仕方(単結合、多重結合、等)、立体的な情報などを含む

├ 短縮構造式、示性式 : 価標を用いず、主に1行内で式を書く

側鎖、置換基はカッコ内に書く

├ 線結合構造式 : 価標と、元素記号を用いる

└ 骨格構造式

□ 立体構造式(投影式)

├ wedge 投影式、Natta 投影式 : 楔型の価標を用いる書き方

├ のこぎり台投影式 : 斜め手前から見たような書き方

├ Newman 投影式 : 結合の軸の方向から見たような書き方

├ Fischer 投影式 : 主に糖に用いる。十字の縦の結合が紙面奥を向く

└ Haworth 投影式 : 環状の糖に用いる

└ 点電子構造式 : ルイス構造とも。結合電子対以外に、非共有電子対も書く

変形として、共有結合は価標を用い、非共有電子対を書き込むものもある

└ 3D 分子モデル

物質名	1-ヘキセン	酢酸	[1,2]ジオキセ	ギ酸メチル	ダイヤモンド	食塩
			タン			
組成式	CH_2	CH ₂ O	CH ₂ O	CH ₂ O	С	NaC1
分子式	C_6H_{12}	$C_2H_4O_2$	$C_2H_4O_2$	$C_2H_4O_2$	C _n	常温常圧では分子
(一般に組成式				ノ	(n は非常に大きな数)	ではないので、分子式は書かれない。
の n 倍。n は整		4+) = + 146 / 1 · A 44 · .	***	at the or take 10		1400℃以上で気体
数。※1)			iは、同じ分子式をi 互いに 異性体 である			にしたときのみ、
		31. C10014.	五(4)0美庄体(8)4	J C V · J 。		NaCl 分子が生じ る。
示性式	CH₂=CH C ₄ H ₉	CH₃ <mark>CO₂H</mark>		HCO₂CH₃		
短縮構造式	CH ₂ =CH (CH ₂) ₃ CH ₃	CH ₃ CO ₂ H		HCO ₂ CH ₃		
		CH ₃ C (=0) OH		HC (=0) OCH_3		
構造式 (食塩について の図は構造「式」 ではない。)	TH T	H C OH H H	O-O H-C-C-H H H	0=C O	図の基本単位が繰り返される。	禄:Cl ⁻ 紫:Na ⁺

※1 組成式が CH_2O である分子には、分子式が CH_2O である化合物(例:ホルムアルデヒド)もある。 $C_2H_4O_2$ の他、 $C_3H_6O_3$ もある。組成式が CH_2O である場合、分子式は $C_nH_{2n}O_n$ である。

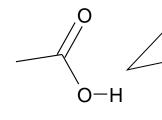
※2 示性式や短縮構造式として示されているものを、単に分子式と呼ぶこともある。

酢酸分子の**構造**のいろいろな表し方(以下は、すべて**構造式**)

※ 結合の腕の数が、炭素【 】本、水素【 】本、酸素【 】本、(窒素は3本)となっている!

般的な**構造式**

元素記号 C:炭素、O:酸素、H:水素 など


結合を表す線(【

一:単結合 (2つの原子が2つの電子を共有)

=: [】結合(2つの原子が4つの電子を共有)

】結合(2つの原子が6つの電子を共有)

→ : 単結合(結合が紙面手前方向に向いている)

骨格構造式(有機化学や生化学でよく使用される。)

- 元素記号のうち、炭素を省略することがある。結合を表す価標の 末端、交点で元素記号が省略されていたら、それは炭素である。
- 炭素に結合した水素は省略できる。
- 例外的な構造や、着目したい位置では炭素や水素を明示する。
- C上以外の水素、および、C.H 以外の元素は省略しない。

$CH_3C(=O)OH$ CH₃CO₂H

短縮構造式 構造式を1行で書こうとするもの。

- 側鎖や置換基は、主鎖炭素の右側に書く。原子団はカッコで括る。
- 単結合の価標は通常は省略する。多重結合の価標は、省略しない 方が明瞭であるが、省略することもある。例 CH₂=CH₂, CH₂CH₂
- カルボキシ基 -C(=0) OH は -COOH や -CO₂H などのように、慣 例的に認められた書き方がある。左側に結合しているカルボキシ 基は、結合の順序に厳密に従って書けば HOC(=0)- となる。
- アルデヒド基は、-CHO と書く。結合の順序に従って -CH(=0) で も良い。-COH の順はアルコールと紛らわしいので用いない。
- 側鎖や置換基は、メチル基 (Me)、エチル基 (Et)、フェニル 基(Ph)などのように、定まった略号を用いてもよい。
- ・ 繰り返しの構造がある場合に、カッコを用いることがある。 例 ヘキサン CH₃CH₂CH₂CH₂CH₂CH₃ → CH₃ (CH₂)₄CH₃

※ 骨格構造式

- 結合角や結合長は正しく反映していない(2次元上に表示するための限界がある)。 ただし、シス-トランス配置などは区別して書くことができる。
- ・ 元素記号の表記において、4本の結合をもつ炭素と、その炭素上の水素は省略できる。 その他の元素や、上記に当てはまらない炭素、水素は省略できない。 従って、元素記号がなく、線の末端や折れている位置で省略されているのは主に以下のみ。

 $-CH_3$

 $-CH_2-$, $=CH_2$

>CH-, =CH-, \equiv CH

- ・酸素や窒素上の水素が省略される場合もないことはありませんが、通常は省略しません。 例 —OH , >NH
- ・カルベン(>C:)や、ラジカル、カチオン、アニオンなどのように、 4本の結合をもたない炭素については、その上の水素も省略せずに示してください。
- ・置換基、官能基の構造など、価標を用いずに短縮構造式の書き方で書くことがある。 例 Ph-NO₂, Ph-CO₂H