(科目コード: 8508520104JJ)

【改訂】第31版(2013-04-17)

【科目】集積回路工学

【科目分類】 専門科目 【選択・必修の別】選択 【学期・単位数】後期・1単位

【対象学科・専攻】 電子情報 4年

【担当教員】 奥村 憲三,大豆生田 利章

【授業目標】

- ・半導体の原理および動作を理解できる。
- ・論理回路の構成および動作を理解できる。
- ・集積回路の製造法について理解できる。

【教育方針・授業概要】

本科目の総授業時間数は22.5時間である。

- ・半導体の構造を物理面から講義し、トランジスタの動作を解説する。 ・MOSの論理回路について基本動作について解説する。
- ・メモリ/マイクロプロセッサの基本構成および動作について解説する。
- ・集積回路の設計手法について解説する。
- ・集積回路の製造法について物理現象を踏まえて解説する。

【教科書・教材・参考書 等】

参考書:現代半導体デバイスの基礎:岸野正剛:オーム社:9784274129964

参考書:はじめての半導体 -しくみと基本がよくわかる- :内富直隆:技術評論社:9784774139715 参考書:図解入門 よくわかる最新半導体の基本と仕組み:西久保靖彦:秀和システム:9784798028637

【授業形式・視聴覚・機器等の活用】

1回/月 集中講義

プロジェクタ(PC画面表示)

【メッセージ】

授業に集中し、必ずノートを取る

【成績評価方法】

[後期]中間試験:40%,期末試験:40%,レポート:20%

【達成目標】

	達成目標	割合	評価方法			
1	・半導体の原理および動作を理解できる。	33 %	中間試験・レポートで評価する。			
2	・論理回路の構成および動作を理解できる。	33 %	中間試験・期末試験・レポートで評価する。			
3	・集積回路の製造法について理解できる。	34 %	期末試験・レポートで評価する。			

【本校の学習・教育目標】

- 技術的問題解決のための専門分野の基本的知識を身に付ける 各学科における専門科目を学習することにより、技術的課題を理解し対応できる
- (D-1) 自然科学、基礎工学、専門工学の知識を用いて、現実の技術的課題を理解し、それを解決するための工夫がで きる

【授業計画】(集積回路工学)

技夫引 1 1 1 1 1 1 1 1 1						
回数	授業の主題	内容	レポート	宿題		
1	半導体の概要	・半導体とは				
2	半導体の物理	・エネルギーバンド				
3	MOSトランジスタの構造	・MOS構造				
4	MOSトランジスタの動作原理	・電子、正孔の動き				
5	MOSトランジスタの特性	・電気的特性				
6	MOSの論理回路 (1)	・インバータ素子、NAND素子、NOR素子				
7	MOSの論理回路(2)	・フィリップフロップ				
		・カウンタ、エンコーダ、デコーダ、加算器				
3	(中間試験)					
9	メモリ	・ダイナミック / スタティック / 不揮発 メモリ				
10	マイクロプロセッサ	・マイクロプロセッサの動作原理				
11	集積回路設計(1)	・設計フロー				
12	集積回路設計(2)	・論理設計/レイアウト設計/テスト設計				
13	製造プロセス(1)	・シリコンウェハー				
14	製造プロセス(2)	・フォトリソグラフィ				
15	製造プロセス(3)	・テスト、故障診断				