(科目コード: 8704720064KK)

【改訂】第31版(2013-03-19)

【科目】機器分析

【科目分類 】 専門科目 【選択・必修の別】 必修 【学期・単位数】後期・1単位

【対象学科・専攻】 物質 4年

【担当教員】 中島 敏

【授業目標】

代表的な機器分析法について、その原理、および装置の概要について理解し、分析データの処理を行ったり、実験結果を解釈できる。

【教育方針・授業概要】

本科目の総授業時間数 22.5 時間である。(90分×15回)

本授業では、化学物質の同定や物性の測定に不可欠な、汎用性の高い分析手法について学ぶ。

【教科書・教材・参考書 等】

教科書:基礎からわかる機器分析:加藤正直 他:森北出版株式会社:978-4-627-24561-7

教科書:入門機器分析化学演習:庄野利之 他:三共出版:4-7827-0405-4

参考書:実験データを正しく扱うために:化学同人編集部 編:化学同人:978-4-7598-1135-3 参考書:有機化合物のスペクトルによる同定法:Silverstein 他:東京化学同人:4-8079-0633-X

参考書:機器分析の手引き(1~3、データ集):化学同人:4759802924 上記指定教科書以外に、授業時に使用するプリントを適宜配布する。

【授業形式・視聴覚・機器等の活用】

講義形式で行う

【メッセージ】

試験には、定規と関数電卓を準備しておくことが望ましい。ただし、試験時にはPCタイプの電卓(プログラム可能なもの、式の入力と記憶が可能なもの)やスマホの使用は認めない。

【備考】

宿題提出用のノートを準備すること。(講義用のノートとは別にすること。)

毎回の授業時に宿題の範囲を指定するので、指定された期限までに提出すること。(成績評価の20%とする。) 提出場所は、物質工学科棟II、3階、中島教員室の前。

【成績評価方法】

[後期]中間試験:40%,期末試験:40%,毎時間指定する課題(指定教科書(2冊)の、該当する章の章末問題)提出 :20%

【本校の学習・教育目標】

(C) 技術的問題解決のための専門分野の基本的知識を身に付ける 各学科における専門科目を学習することにより、技術的課題を理解し対応できる 【授業計画】(機器分析)

【授業計画】(1	T	T
回数	授業の主題	内容	レポート	宿題
第1回	機器分析とは	授業概要説明		
		機器分析概論		
	顕微鏡	電子顕微鏡の種類と特徴		
第2回	測定値の扱い方	数値の精度		
		有効数字の扱いと誤差の伝播		
		JIS丸め		
第3回	光	光エネルギー		
第 4 回		エネルギーの分配		
		ボルツマン分布		
		光と分子の相互作用		
		分子内のエネルギー準位		
		光の吸収、光等量則、垂直遷移		
第5回	紫外可視吸収	装置		
第6回	デバーコ 1元がX 4人	定性・定量分析		
		ランベルトベール則		
		発色団と助色団		
	兴业,*****			
	蛍光・燐光	ストークスシフト		
		蛍光スペクトル		
		励起スペクトル		
		リン光		
		蛍光の強度に影響を与える因子		
		励起状態の寿命		
第7回	原子分光	原子吸光		
		光源		
		干涉		
		検量線		
		原子発光分析		
		ICP		
第8回	中間試験			
第9回	I R・ラマン	IR、振動回転スペクトル		
		原理、測定法		
		スペクトルの解釈		
		官能基による特性吸収、指紋領域		
		レイリー散乱、ラマン散乱、共鳴ラマン		
第10回	X線	X線吸収分光とX線光電子分光		
	7 mgc	特性X線		
		吸収端		
		×線構造解析		
		粉末×線回折		
		ブラッグの条件		
약44 등	電気ルヴ	ボルタンメトリーとクーロメトリー		
第11回	電気化学			
		セル、電極電気の発展を表現します。		
		電気化学基礎		
\$\$40E	キャン・ナビ	ネルンストの式		
第12回	熱分析	熱重量測定		
77.10	NIMB	示差熱分析		
第13回	NMR	核スピン		
		ラーモアの式		
		化学シフト		
		スピン結合による分裂		
		積分曲線		
		シュレーリーの加成則による化学シフトの予測		
第14回	質量分析	ミリマス、平均分子量とm/z		
		イオン化 (EI,CI,FAB,MALDI,ESI)法とその特徴		
		分子イオンとフラグメントイオン		
		電場および磁場による荷電粒子の偏向		
		TOF		
		ピーク分解能		
		同位体ピーク		
第15回	クロマトグラフィー	LC		
	7 H X 1 7 7 7 7 1 T	GC		
		分離機構(分配、吸着、サイズ排除、アフィニティ) 		
		検出法の発生の理論を対象の対象を		
		保持時間、分解能、理論弾数、分離比		