(科目コード: 8007420008AA)

【改訂】第20版(2014-09-18)

【科目】解析力学

【科目分類 専門科目 【選択・必修の別】選択 【学期・単位数】前期・2単位

【対象学科・専攻】 生産システム,環境 1・2年

【担当教員】 宇治野 秀晃

【授業目標】

Euler-Lagrange方程式を用いて,古典力学の典型的な問題を解くことができる.

正準形式の基本的な枠組みを理解し,基本的な問題を取り扱うことができる.

Hamilton-Jacobi方程式を用いて,基本的な問題を解くことができる.

古典力学と量子力学の対応関係を理解できる.

【教育方針・授業概要】

本科目の総授業時間数は22.5時間である.古典力学の基礎方程式である質点に対するNewtonの運動方程式は,選んだ座標に応じて運動方程式の形が変わるため,大変に煩わしい.その煩雑さを解消し,万能で一般的な処方箋を提供するLagrange形式をまず解説し,Machが「思考の経済」と絶賛したその実用上の利点を様々な例題を通じて実感させる.続いてLagrange形式よりもさらに大きな変数変換の自由度を与えるHamilton形式について解説し,運動方程式の表現の一つであるHamilton-Jacobi方程式を導く.量子力学の基礎方程式であるSchroedinger方程式が,古典極限でHamilton-Jacobi方程式に帰着することを見ることで,量子力学が古典力学の拡張理論であることを理解する.

【教科書・教材・参考書 等】

参考書:物理テキストシリーズ2 解析力学:大貫 義郎:岩波書店:978-4000077422

参考書:量子力学を学ぶための解析力学入門(増補第2版):高橋 康:講談社:978-4061532410

参考書:ランダウ=リフシッツ理論物理学教程:ランダウ・リフシッツ 著 広重・水戸 訳:東京図書:978-4489011 603

参考書:詳解力学演習:後藤 憲一・山本 邦夫・神吉 健 共編:共立出版:978-4320030251

教科書は特に指定しません.上に挙げた参考書の記述も参考に講義を組み立てますが,特定の教科書に沿って進めるわけではありません.講義ノートはキチンととって下さい.解析力学の教科書は非常にたくさんあります.趣味に合うものをいくつか自発的に書店・図書館などで手に取ってみて,自分にあった本を見つけて,じっくり読んで下さい

【授業形式・視聴覚・機器等の活用】

座学

【URLアドレス】

http://butsuri.nomaki.jp/

【事前に行う準備学習】

微積分を用いる基礎的な力学(例えば本校学科3年応用物理Iでカバーされるような),多変数関数に対するものも含む 微積分(偏微分,重積分),線形代数(特に行列の対角化,2次形式の標準化),簡単な微分方程式の解法に関する知識 を前提としますから,事前に復習をしておくと良いでしょう.

【備考】

2013年度は開講されません.

【成績評価方法】

[前期]中間試験:0%,期末試験:100%,レポート:0%,試験の出題方針および成績処理の詳細については,上記URLを参照のこと.

【達成目標】

	達成目標	割合	評価方法			
1	Euler-Lagrange方程式を用いて,古典力学の典型的な問題を解くこ	50 %	定期試験によって評価する.			
	とができる.					
2	正準形式の基本的な枠組みを理解し,基本的な問題を取り扱うこと	40 %	定期試験によって評価する.			
	ができる.					
3	Hamilton-Jacobi方程式を用いて,基本的な問題を解くことができ	5 %	定期試験によって評価する.			
	3 .					
4	古典力学と量子力学の対応関係を理解できる。	5 %	定期試験によって評価する.			

【本校の学習・教育目標】

(B-1) 工学の基礎となる自然科学の科目を確実に理解する

【授業計画】(解析力学)

回数	解析力学) 授業の主題	内容	レポート	宿題
第1回~第2回	最小作用の原理とLagrangian	・一般化座標とLagrangian		解析力学問題集
		・Euler-Lagrange方程式		(自作教材)1
		・点変換とEuler-Lagrange方程式の不変性		~ 5
		・自由粒子とLagrangian		
		・自由粒子と平面極座標		
第3回~第4回	L=K-U型のLagrangianを持つ系	・保存力とEuler-Lagrange方程式		解析力学問題集
		・2 重振り子		(自作教材)6
		・二重振子		~9, 12
第5回	保存量と対称性	・循環座標		解析力学問題集
		・Lagrangianの不定性		(自作教材)10
		・ネーターの定理		, 11
		・空間の一様性と運動量の保存		
第6回~第7回	正準形式	・正準方程式		解析力学問題集
		・最小作用の原理と正準方程式		(自作教材)13
		・正準変換と母関数		~ 18
第8回	Lagrange形式の総復習	・テストゼミ(模擬試験 + 問題解説)		解析力学模擬試
				験1の復習
第9回	正準形式	・調和振動子の正準形式による取扱い		解析力学問題集
		・エネルギーに共役な正準変数としての時間		(自作教材)19
				~ 21
第10回~第11回	Hamilton-Jacobi方程式	・時間発展と正準変換		解析力学問題集
		・Hamilton-Jacobi方程式		(自作教材)22
		・Hamilton-Jacobi方程式の完全解と正準方程式の一		~ 24
		般解		
		・簡単な例題		
第12回~第14回	量子力学の古典極限	・Schroedinger方程式の古典極限		解析力学問題集
		・量子力学における最小作用の原理		(自作教材)25
				, 26
第15回	正準形式以降の総復習	・テストゼミ(模擬試験 + 問題解説)		解析力学模擬試
				験2の復習
	定期試験			