(科目コード: 8903720124CC)

【改訂】第26版(2014-04-02)

【科目】水力エネルギー概論

【科目分類】 専門科目 【選択・必修の別】選択 【学期・単位数】後期・1単位

【対象学科・専攻】 環境都市 4年

【担当教員】 八木 雄市,田中 英紀,長山 昭夫,山本 好克

【授業目標】

水力エネルギ - とその発電システムの概要が理解できる。

水力発電の計画・設計ができる。

水理学を基本とした水力発電理論を理解できる。

基本的な電力事業法が理解できる。

【教育方針・授業概要】

本科目の総授業時間時数は22.5時間である。自然エネルギー・水力エネルギ - 導入に意義・背景、水力エネルギ - の水理学的基礎理論、水力エネルギ - による発電(水力発電)の計画・設計論などを学ぶとともに、水力発電計画・設計に関する実務演習を行う。

【教科書・教材・参考書 等】

参考書:水理学:日下部重幸 他:コロナ社

参考書:水力発電がわかる本:全国小水力利用推進協議会: Ohmsha: 978-4-274-21213-0

【授業形式・視聴覚・機器等の活用】

座学

【成績評価方法】

[後期]中間試験:45%,期末試験:45%,レポート:10%

【達成日標】

エルルト							
	達成目標	割合	評価方法				
1	水力発電を計画するうえで不可欠な水文量の計測方法	20 %	演習				
	と分析方法を修得する。						
2	水力発電を計画するうえで不可欠な水文量の計測方法	20 %	演習				
	と分析方法を修得する。						
3	水力発電を計画・設計・施工するにあたり、総合的にその立地条件	20 %	演習				
	を調査する基礎を修得する。						
4	水力発電の構造形式、立地場所の選定を基に流量計測、発電機効率	20 %	演習				
	、発電能力の基礎理論を修得し、基本設計ができるようにする。						
5	基本設計を受けて、さらに詳細な発電効率や発電機性能、蓄電シス	20 %	演習				
	テム、保守等の詳細設計を修得する。						

【本校の学習・教育目標】

(C) 技術的問題解決のための専門分野の基本的知識を身に付ける

各学科における専門科目を学習することにより、技術的課題を理解し対応できる

【授業計画】(水力エネルギー概論)

回数	授業の主題	内容	レポート	宿題
第1回	自然エネルギ - について	自然エネルギ - の種類、活用方法、事例紹介、水力エ		
		ネルギ - の歴史、システム紹介		
第2回	水力エネルギ - 水理学(1)	水力発電形式の分類や特徴を水理学に立脚した解説を		
		行う。		
第3回	水力エネルギ・水理学(2)	水力発電理論を水理学を基本とした講義で修得する。		
第4回	水力エネルギ・水理学(3)	水力発電理論を水理学を基本とした講義で修得する。		
第5回	水力エネルギ - 水理学(4)	水力発電を計画するうえで不可欠な水文量の計測方法		
		と分析方法を修得する。		
第6回	水力エネルギ - 水理学(5)	水力発電を計画するうえで不可欠な水文量の計測方法		
		と分析方法を修得する。		
第7回	中間試験			
第8回	水力エネルギ - 計画論(1)	日本の電気事業に関する歴史を踏まえて事業制度を理		
		解する。		
第9回	水力エネルギ - 計画論(2)	水力発電の能力と将来性について国内外を対象として		
		理解する。		
第10回	水力エネルギ - 計画論(3)	水力発電を計画・設計・施工するにあたり、総合的に		
		その立地条件を調査する基礎を修得する。		
第11回	水力エネルギ - 設計論(1)	水力発電の構造形式、立地場所の選定を基に流量計測		
		、発電機効率、発電能力の基礎理論を修得し、基本設		
		計ができるようにする。		
第12回	水力エネルギ - 設計論(2)	基本設計を受けて、さらに詳細な発電効率や発電機性		
		能、蓄電システム、保守等の詳細設計を修得する。		
第13回	水力エネルギ - 設計論(3)	水力発電を計画・設計・施工するにあたり、ライフサ		
		イクルコスト等を基に事業の成立や建設投資の回収評		
		価等を修得する。		
第14回	水力エネルギ・設計論(4)	水力発電において、電気事業法をはじめとして多くの		
		法律が関連している。この法律を理解するとともに将		
		来にわたっての法的課題等を理解する。		
第15回	水力エネルギ - の実際	群馬県内の水力発電所を実際に見学し、講義で修得し		
		た内容をさらに理解する。		
第16回	定期試験			